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As an exercise in evaluating how useful this listing might be in actual practice, 
this reviewer made a listing of 16 real constants (before studying the authors' 
definition of the book's contents). Of these, all but four were actually indexed 
in the book. It is worth mentioning, and briefly discussing, the four exceptions: 

1. 4.6692016091 = Feigenbaum's s constant (from the theory of chaos). 
This constant was not included in the standard domain. 

2. 14.1347251417 = the imaginary part of the first zero of Riemann's ' 

function. Note the "Real" in the title of the book. 
3. 0.4619397663 = I sin(3ir/8)- /2 + Orf. Twice this constant is in- 

cluded. 
4. 0.9772498680 = P(2), where P(.) denotes the cumulative Gaussian 

probability function. Twice this constant is included, since P(x) = 

I + erf(x/s/2)], and the values of erf are indexed. 

This exercise underscores both the strengths and the weaknesses of the book. 
On one hand, it appears that most numbers ordinarily encountered in mathe- 
matics are included. However, there are some holes in the list. Most notable 
are those cases where the constant one is looking for differs from some special 
function result by a simple rational factor, such as one-half. 

Twenty years ago, tables of mathematical functions were widely used by both 
pure and applied mathematicians. In the intervening years such compilations 
have been rendered obsolete by the widespread availability of scientific calcu- 
lators and subroutine libraries that can evaluate even fairly esoteric functions. 
One wonders if eventually the same fate will come to a book such as this. Al- 
ready part of this table, namely the tabulation of roots of simple polynomials, 
has been rendered obsolete by the availability of relation-finding algorithms 
in packages such as Mathematica. These routines detect polynomial roots by 
searching for small integer relations in the vector (1 , x, x2, x3, ... ,xn ). 
Perhaps eventually such routines can be expanded in power to search for many 
other possible relationships. But in the meantime the Borwein book is all we 
have. 
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21[11-01, 11B391.-S. VAJDA, Fibonacci & Lucas Numbers, and the Golden Sec- 
tion: Theory and Applications, Ellis Horwood Series in Mathematics and its 
Applications, Wiley, New York, 1989, 190 pp., 241 cm. Price $64.95. 

Although there is a journal devoted to Fibonacci numbers and their gener- 
alizations, few monographs deal with this subject alone. There is a short book 
about Fibonacci and Lucas numbers by V. E. Hoggatt, Jr. [1] and a little book 
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by N. N. Vorobtev [2]. Thus, Vajda's book, which is longer than both of these 
books combined, is a welcome addition to the literature of the subject. 

The introduction lists some problems in which Fibonacci numbers arise, 
from biology to computer science and from poetry to probability. In the main 
body of the book, scores of identities involving Fibonacci and Lucas numbers 
are derived. The important ones are numbered and repeated at the end of 
the book for easy reference. Some of the topics considered are Pell's equa- 
tion, paradoxical dissection of rectangles, the golden section, finite sums in- 
volving Fibonacci and Lucas numbers and binomial coefficients, divisibility 
properties, distribution of Fibonacci numbers modulo m, search for extrema 
of real functions, and- analysis of games. One chapter was written by B. W. 
Conolly; it deals with Meta-Fibonacci sequences such as H(1) = H(2) = 1, 
H(n) = H(n - H(n - 1)) + H(n - H(n - 2)) for n > 2. An appendix gives 
results from number theory which are used in the main text. 

The reader should beware of many typographical errors and even a few factual 
errors. For example, formula (77) on p. 60 states that 

E 1 /F=3 + a = 4-X T 2 
i=l 

In fact, it is a famous unsolved problem to evaluate this sum in closed form or 
to decide whether it is transcendental. The proof which follows (77) actually 
demonstrates the true formula 

E 1 /F2, = 2 @ 

1=0 
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22165-06, 65L05, 65P051.-R. E. BANK, R. BULIRSCH & K. MERTEN (Edi- 
tors), Mathematical Modelling and Simulation of Electrical Circuits and Semi- 
conductor Devices, International Series of Numerical Mathematics, Vol. 93, 
Birkhauser, Basel, 1990, xv + 297 pp., 24 cm. Price $59.00. 

These are the proceedings of a conference held at the Mathematics Research 
Institute in Oberwolfach, October 30-November 5, 1988. There are eight 
contributions on circuit simulation, most of them dealing with the numerical 
treatment of differential-algebraic equations, and 13 contributions on device 


